1,introduction
Estimator 会封装下列操作:
- 训练
- 评估
- 预测
- 导出以供使用
预创建的 Estimator,也可以编写自定义 Estimator。所有 Estimator(无论是预创建的还是自定义)都是基于 类的类
2,Estimator 的优势
- 您可以在本地主机上或分布式多服务器环境中运行基于 Estimator 的模型,而无需更改模型。此外,您可以在 CPU、GPU 或 TPU 上运行基于 Estimator 的模型,而无需重新编码模型。
- Estimator 简化了在模型开发者之间共享实现的过程。
- 您可以使用高级直观代码开发先进的模型。简言之,采用 Estimator 创建模型通常比采用低阶 TensorFlow API 更简单。
- Estimator 本身在 之上构建而成,可以简化自定义过程。
- Estimator 会为您构建图。
- Estimator 提供安全的分布式训练循环,可以控制如何以及何时:
- 构建图
- 初始化变量
- 开始排队
- 处理异常
- 创建检查点文件并从故障中恢复
- 保存 TensorBoard 的摘要
3,预创建的 Estimator
预创建的 Estimator 会为您创建和管理 和 对象
预创建的 Estimator 程序的结构
编写一个或多个数据集导入函数
def input_fn(dataset): ... # manipulate dataset, extracting the feature dict and the label return feature_dict, label
定义特征列
以下代码段创建了三个存储整数或浮点数据的特征列。前两个特征列仅标识了特征的名称和类型。第三个特征列还指定了一个 lambda,该程序将调用此 lambda 来调节原始数据 # Define three numeric feature columns. population = tf.feature_column.numeric_column('population') crime_rate = tf.feature_column.numeric_column('crime_rate') median_education = tf.feature_column.numeric_column('median_education', normalizer_fn=lambda x: x - global_education_mean)
实例化相关的预创建的 Estimator
# Instantiate an estimator, passing the feature columns. estimator = tf.estimator.LinearClassifier( feature_columns=[population, crime_rate, median_education], )
调用训练、评估或推理方法
# my_training_set is the function created in Step 1 estimator.train(input_fn=my_training_set, steps=2000)
4,自定义 Estimator
每个 Estimator(无论是预创建还是自定义)的核心都是其模型函数,这是一种为训练、评估和预测构建图的方法。如果您使用预创建的 Estimator,则有人已经实现了模型函数。如果您使用自定义 Estimator,则必须自行编写模型函数
5,从 Keras 模型创建 Estimator
您可以将现有的 Keras 模型转换为 Estimator。这样做之后,Keras 模型就可以利用 Estimator 的优势,例如分布式训练。调用
# Instantiate a Keras inception v3 model. keras_inception_v3 = tf.keras.applications.inception_v3.InceptionV3(weights=None) # Compile model with the optimizer, loss, and metrics you'd like to train with. keras_inception_v3.compile(optimizer=tf.keras.optimizers.SGD(lr=0.0001, momentum=0.9), loss='categorical_crossentropy', metric='accuracy') # Create an Estimator from the compiled Keras model. Note the initial model # state of the keras model is preserved in the created Estimator. est_inception_v3 = tf.keras.estimator.model_to_estimator(keras_model=keras_inception_v3) # Treat the derived Estimator as you would with any other Estimator. # First, recover the input name(s) of Keras model, so we can use them as the # feature column name(s) of the Estimator input function: keras_inception_v3.input_names # print out: ['input_1'] # Once we have the input name(s), we can create the input function, for example, # for input(s) in the format of numpy ndarray: train_input_fn = tf.compat.v1.estimator.inputs.numpy_input_fn( x={ "input_1": train_data}, y=train_labels, num_epochs=1, shuffle=False) # To train, we call Estimator's train function: est_inception_v3.train(input_fn=train_input_fn, steps=2000)